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Acoustic Bessel Bullets (BB) are de®ned to be a new class of band-limited
Transient Bessel Beams or localized waves which maintain their shape and
amplitude as they propagate in space. The space±time properties of acoustic BB
®elds generated by planar spatial apertures excited with gated sinusoidal
excitations are investigated using a recently developed generalized impulse
response approach. Analytical results are presented for the general
characteristics of acoustic BB ®elds generated by in®nite and ®nite planar
apertures as a function of center excitation frequency and bandwidth.
Numerical results are then presented to illustrate the space±time properties of
the on-axis ®eld for acoustic BB ®elds relative to those of a conventional piston
source. The near to far®eld transition distance for acoustic BB ®elds is
investigated and compared to the Rayleigh distance for a piston source.
Important edge wave e�ects and anomalous spatial decay rates are observed
and discussed.

# 1999 Academic Press

1. INTRODUCTION

In 1983, Brittingham discovered the ®rst localized wave (LW) solution to the
homogeneous Maxwell's equation which he termed the Focus Wave Mode
(FWM) [1]. A free parameter in the solution determines the overall
characteristics of the ®eld corresponding to a quasi transverse plane wave at one
extreme and a narrow spatially transverse pulse at the other extreme. Ziolkowski
subsequently used the FWM solution as a kernel for constructing new localized
wave (LW) solutions [2]. In particular, the Modi®ed Power Spectrum (MPS)
pulse developed by Ziolkowski has received enormous attention in the literature
[3±11].
In two recent papers [12, 13], Stepanishen developed a new class of localized

waves which maintain their shape and amplitude as they propagate in space.
These localized waves were designated as acoustic bullets or acoustic Transient
Bessel Beams (TBB). In contrast to the FWM and MPS solutions a TBB ®eld
maintains its temporal and spatial shape as the acoustic bullet propagates in free
space from an in®nite planar aperture. The three dimensional TBB ®eld thus
exhibits the same characteristic as the D'Alembert solution [14] to the one-
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dimensional wave equation, i.e., the waves exhibit no change in shape about the

pulse center as they propagate.

Although the exact TBB solution in all space can not be generated from a

®nite planar aperture, the general characteristics of TBB ®elds can be realized in

a limited space±time region. In particular, an acoustic bullet with a smaller

support region than the circular aperture can be launched from a ®nite aperture

[12] as illustrated in Figure 1. In the near®eld region the ®eld exhibits properties

similar to those observed for the in®nite aperture case, and in the far®eld region

the ®eld exhibits an inverse range dependence. It is of interest to note that the

lateral extent of the acoustic bullet may be smaller than the aperture.

A generalized impulse response approach to investigate the on-axis and

far®eld space±time properties of TBB ®elds was developed in a recent paper [13].

This approach is an extension of a previously developed impulse response

approach [14] to investigate the space±time properties of ®elds which are

generated by pistons, i.e., sources with uniform velocity distributions. Important

characteristics of the space±time impulse responses associated with general TBB

®elds were presented in the recent paper; however, no numerical results for TBB

®elds, which can be realized in practice, were presented.

The space±time properties of the acoustic ®eld for a particular class of

acoustic bullet or TBB ®eld which is designated here as an acoustic Bessel Bullet

(BB) is investigated in the present paper. These wave ®elds are associated with

gated sinusoidal signals. In contrast to previously addressed [12, 13] baseband

signals of interest, an acoustic BB has a bandpass frequency spectrum and is
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Figure 1. A ®nite planar circular aperture.
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thus more readily generated from typical planar piezoelectric transducers which
naturally exhibit bandpass ®lter characteristics. A brief review of the general
theory for acoustic bullet or TBB ®eld is ®rst presented in section 2, acoustic BB
®elds are de®ned in section 3.

Analytical results for the space±time on-axis ®eld and far®eld properties of
acoustic BB ®elds are developed in section 3, for in®nite and ®nite planar
apertures using the recently developed generalized impulse response approach
[13]. Estimates are ®rst presented for the axial and lateral resolution for acoustic
BB ®elds which are generated by in®nite planar apertures. Estimates of the near
to far®eld transition range for acoustic BB ®elds which are generated by ®nite
planar apertures are then developed via the impulse response approach.

Numerical results for the case of an in®nite aperture are presented in section 4
to illustrate the effects of carrier frequency and pulse length on the axial and
lateral extent and the general space±time properties of acoustic BB ®elds.
Numerical results for the case of a ®nite aperture are then presented to illustrate
the general space±time properties of the on-axis ®eld for acoustic BBs relative to
the ®eld generated from the aperture with a spatially uniform excitation. These
results clearly indicate the importance of the edge generated wave on the beam
formation process. In addition, an interesting anomalous on-axis far ®eld decay
rate is observed for selected frequencies.

2. GENERAL THEORY

The acoustic wave equation for the axisymmetric pressure ®elds of interest
p(r, z, t) can be expressed in the normalized cylindrical co-ordinate system
illustrated in Figure 1 as

1

r
@

@r
r
@

@r

� �
� @2

@z2
ÿ @2

@t2

� �
p�r, j, z, t� � 0, �1�

where (r, z) are the normalized spatial co-ordinates and the normalized time is
t= c0t/L, where t denotes the unscaled time variable, c0 is the constant sound
speed of the media, and L is a characteristic length for the planar aperture of
interest. It has been recently shown [12] that general TBB ®elds which exhibit the
properties of acoustic bullets in an unbounded free space can be expressed as

p�r, z, t� � w�t� 
 j�r, z, t�, �2�
where w(t) is an arbitrary weighting function which can be used to control the
spectral properties of the ®eld, 
 denotes the convolution operator and

j�r, z, t� � 1

p��r sin z�2 ÿ �tÿ z cos z�2�1=2
,

ÿ r sin z� z cos z < t < r sin z� z cos z: �3�
For the on-axis case where r=0 it is noted that

j�0, z, t� � d�tÿ z cos z� �4�
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and the sifting property of the Dirac delta function d( ) then leads to the result

p�0, z, t� � w�tÿ z cos z�: �5�

Stepanishen [13] has recently shown that the TBB ®eld generated from a ®nite
planar aperture as illustrated in Figure 1 can be expressed as

p�r, z, t� � dw�t�
dt

 hs�r, z, t� �6�

� w�t� 
 dhs�r, z, t�
dt

, �7�

where the generalized space±time impulse response ho(r, z, t) is de®ned as

hs�r, z, t� � cos z
�s
0

rs drs

�2p
0

dfs

1

2pR
j�rs, 0, ts�ts�rÿR: �8�

R is the distance between a point on the aperture and the spatial point of interest
and s is the (normalized) radius of the aperture. Relatively simple closed form
expressions, which are repeated below for convenience, and associated numerical
results for the on-axis and far®eld generalized space±time impulse response were
presented in the earlier paper.

For the on-axis case where 0E z/zt< 1, hs (0, z, t) can be expressed in the
simple form

hs�0, z, t� � u�tÿ z cos z� ÿ u�tÿ
���������������
s2 � z2

p
� s sin z� � ds�0, z, t�, �9�

where u( ) denotes the Heaviside function, the transition distance zt= s/tan z
and

ds�0, z, t� � ÿ 1

p
sinÿ1

tÿ rs cos
2 z

sin z
���������������������������
t2 ÿ z2 cos2 z

p" #
ÿ sinÿ1

tÿ r2 cos
2 z

sin z
���������������������������
t2 ÿ z2 cos2 z

p" #( )
�10�

with
���������
s2�z2
p

ÿs sin z<t<
���������
s2�z2
p

�s sin z. Additionally, rs � ���������
s2�z2
p

, r1=
���������
r2
1
�z2

p
and

r1 �
ÿt sin z�

���������������������������
t2 ÿ z2 cos2 z

p
cos2 z

: �11�

For z/zt> 1 it was also shown that

hs�0, z, t� � ÿ 1

p
sinÿ1

tÿ rs cos
2 z

sin z
���������������������������
t2 ÿ z2 cos2 z

p" #
ÿ sinÿ1

tÿ r1 cos
2 z

sin z
���������������������������
t2 ÿ z2 cos2 z

p" #( )
,

for
���������������
s2 � z2

p
ÿ s sin z < t < z,
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� ÿ 1
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tÿ rs cos
2 z

sin z
���������������������������
t2 ÿ z2 cos2 z
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ÿ sinÿ1

tÿ r2 cos
2 z
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���������������������������
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for z < t <
���������������
s2 � z2

p
� s sin z, �12�

where r1 � ���������
r2
1
�z2

p
with

r1 �
t sin zÿ

���������������������������
t2 ÿ z2 cos2 z

p
cos2 z

: �13�

and r2 � ���������
r2
2
�z2

p
with

r2 �
ÿt sin z�

���������������������������
t2 ÿ z2 cos2 z

p
cos2 z

: �14�

Finally, it was shown [13] that the far®eld pressure can be simply expressed as

ps�y, t� � dw�t�
dt

 hfs�y, z, t�, �15�

where the far®eld impulse response h f
s�y; z; t� is expressed as

hfs�y, z, t� �
s2

2R0
cos zgs�y, z, tÿ R0� �16�

and R0 is de®ned in Figure 1. The impulse response gs(y, z, t) can be simply

expressed in the form

gs�y, z, t� � 1

�sin2 zÿ sin2 y� �sin
2 z j�s, 0, t� 
 h1�z, t� ÿ sin2 yĵ�s, 0, t� 
 h1�y, t��,

�17�
where

ĵ�s, 0, t� � j�s, 0, t�jz�y �18�

and

h1�z, t� � 1

ps sin z
1ÿ t

s sin z

� �2
" #1=2

t
s sin z

���� ���� < 1

� 0
t

s sin z

���� ���� < 1:

�19�
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3. ACOUSTIC BESSEL BULLETS

Consider now a special type of acoustic BB which is de®ned by the following
gated sinusoidal weighting function w(t)

w�t� � w0 sin�Obt�, 0EjtjET � 2pN=Ob, �20�
where Ob and 2T are the frequency and pulse duration. It is noted that w(t) is an
odd non-causal time function which consists of 2N sinusoidal cycles. After
de®ning the Fourier transform pair, i.e., w�t� ,W�O�, where

w�t� � 1

2p

�1
ÿ1

W�O� eiOt dO, W�O� �
�1
ÿ1

w�t� eÿiOt dO, �21, 22�

the Fourier transform of w(t) is simply expressed as

W�O� � jw0T
sin��Ob � O�T��
��Ob � O�T�� ÿ

sin��Ob ÿ O�T��
��Ob ÿ O�T��

� �
� j

2pN
Ob

w0
sin�2pN�1� O=Ob��
�2pN�1� O=Ob�� ÿ

sin�2pN�1ÿ O=Ob��
�2pN�1ÿ O=Ob��

� �
: �23�

The magnitude of W(O)/w0T versus the normalized frequency O/Ob is shown in
Figure 2 for N=1, 2 and 4. It is clearly observed from the results in Figure 2
that the relative bandwidth of the signal decreases as N increases and w(t) is thus
a quasi bandpass signal.
The space±time properties of the acoustic BB ®elds generated by in®nite

planar apertures based on the above weighting function are ®rst investigated.
The pressure ®eld in the half space z> 0 is thus simply de®ned by equation (2).
In light of the form of j(r, z, t) in equation (3) it is apparent that the pressure
®eld in the half space ze 0 can be simply expressed as

p�r, z, t� � p�r, 0, tÿ z cos z�: �24�
It is thus apparent that p(r 0, 0, t) is a time limited non-causal odd function with
a time duration equivalent to 2T+2r 0 sin z which is propagated in the z
direction with the supersonic velocity 1/cos z.
Since p(r, 0, t) may be simply used to de®ne the entire ®eld it is noted from

equation (24) that p(r, 0, t) can be expressed as

p�r, 0, t� �
�r sin z
ÿr sin z

w�tÿ t 0�
p��r sin z�2 ÿ �t 0�2�1=2

dt 0: �25�

It is easily shown that p(r, 0, t) is an odd function of t for all r and the on-axis
pressure is simply expressed as follows for w0=1:

p�0, 0, t� � sin�Obt�, 0EjtjET � 2pN=Ob: �26�
Since w(t) is a time limited function it is noted that the integrand in equation
(25) may be zero over a portion of the interval of integration for various t. For
the special case where (Tÿ r sin z)> p/Ob , the preceding statement leads to the
observation that p(r, 0, t) can be decomposed into three terms: a turn-on
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transient extending from ÿ(T+ r sin z)< t<ÿ(Tÿ r sin z), a quasi steady state
extending from ÿ(Tÿ r sin z)< t< (Tÿ r sin z), and a turn-off transient
extending from (Tÿ r sin z)< t< (T+r sin z).
For r sin z<T, the quasi steady state pressure can now be simply described

by the expression

p�r, 0, t� �
�r sin z
ÿr sin z

w�tÿ x1�
p��r sin z�2 ÿ �t 0�2�1=2

dt 0

�
�1
ÿ1

w�tÿ r sin zy�
p�1ÿ y2�1=2

dy �27�

for |t|ETÿr sin z. Since

w�tÿ r sin zy� � sin�Obt� cos�Obr sin zy� ÿ cos�Obt� sin�Obr sin zy� �28�
it then follows from the symmetry of the resultant integrands in equation (27)
that p(r, 0, t) can be expressed as

p�r, 0, t� � pc�Obr sin z� sin�Obt�, �29�
where

pc�Obr sin z� �
�1
ÿ1

cos�Obr sin zy�
p�1ÿ y2�1=2

dy � J0�Obr sin z�: �30�
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Figure 2. Normalized magnitude of W(O) versus normalized frequency O/Ob for N=1, 2
and 4.
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It is thus apparent that p(r, 0, t) may only consist of a turn-on and turn-off
transient at the radial distances rm , where J0(Obrm sin z)=0.
The lateral extent of the BB de®ned by the weighting function in equation (20)

may now be readily estimated for the preceding case and conditions via the use
of the quasi steady state pressure

p�r, 0, t� � J0�Obr sin z� sin�Obt�, �31�
which is also obviously valid for r=0. If the lateral extent of the BB is de®ned
by the radial location rn where the quasi steady state ®eld is reduced to 1=

���
2
p

of
the peak on-axis ®eld, it is then apparent that

rn1
1

Ob sin z
: �32�

Clearly, the lateral extent of the BB can then be simply controlled via the carrier
frequency Ob of the weighting function whereas the on-axis axial extent of the
BB, i.e., 2T, is also a function of N. Thus, the lateral and axial extent of the BB
can be independently controlled via the selection of Ob and N.
The space±time properties of the acoustic BB ®elds generated by a ®nite

planar aperture based on s=1 and the weighting function in equation (20) are
now investigated. In light of equations (9) and (6) the on-axis pressure ®eld in
the region 0E z/zt< 1 can be simply expressed as

ps�0, z, t� � w�tÿ z cos z� � e�0, z, t�, �33�
where

e�0, z, t� � ÿw�tÿ
�������������
1� z2

p
� sin z� � dw�t�

dt

 ds�0, z, t�: �34�

It is apparent that the initial term in equation (33) is the same as the result for
the in®nite aperture whereas e(0, z, t) is a time limited edge wave which is non-
zero over the time interval

�������������
1� z2
p ÿ sin zÿ T < t <

�������������
1� z2
p � sin z� T. It is

also noted that the on-axis pressure ®eld in the region 1E z/zt can be simply
expressed as

ps�0, z, t� � dw�t�
dt

 hs�0, z, t�, �35�

where hs�0, z, t� is now speci®ed by equation (12).
Several general observations regarding the on-axis ®eld are now noted. It

readily follows from the results in equations (9) to (12) that the impulse response
hs�0, z, t� exhibits different forms in different regions of the (z, t) plane as
illustrated in Figure 3, e.g., the impulse response is zero for t< z cos z and
t >

�������������
1� z2
p � sin z. In light of equations (33) and (34) it is also obvious that two

separate non-overlapping pulses can occur in the region 0E z< zb< zt if the
pulse duration 2T< 1ÿ sin z is small enough. For this case in a space±time
region bounded by zb the edge wave does not overlap the initial pulse
corresponding to the wave generated from an in®nite aperture. The on-axis ®eld
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is thus the same as the ®eld from the in®nite aperture over a limited time

window which decreases as z increases within [0, zb].

It is apparent from Figure 3 and the preceding discussion that the edge

generated ®eld and the initial ®eld component associated with the in®nite

aperture ®eld in the region 0E z< zt are separated in time by Dt, where

Dt �
�������������
1� z2

p
ÿ sin zÿ z cos z: �36�

The transition distance zt=cot z is noted to correspond to Dt=0. For the case

of a weighting function with a short pulse duration 2T, it is apparent that two

separate pulses will thus be observed over the range [0, zb] where��������
1�z2

b

p ÿ sin zÿ zb cos z � 2T. Since the temporal separation decreases as z

increases, it is clear from Figure 3 that zb , the axial boundary of interest, is a

monotonically decreasing function of T which is a maximum (zt) for 2T! 0 and

a minimum (0) for 2T=1ÿ sin z.
More generally, it is easily shown that 0E zb< zt and zb/zt can be expressed as

follows for z 6� 0:

zb=zt � 1� 2T

sin z
ÿ

������������������������������������
2
2T

sin z
� 2T

sin z

� �2
s

2 cos z
, 2T < 1ÿ sin z

� 0, 2T > 1ÿ sin z: �37�
For the z range where cos z ' 1 it then follows that zb/zt can be expressed as a

function of a single parameter 2T/z for z 6� 0, i.e.,

zb=zt � 1� 2T

z
ÿ 1

2

������������������������������
2
2T

z
� 2T

z

� �2
s

, 2T < 1ÿ z: �38�
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Figure 3. Space±time boundaries of the impulse response in the tÿ z plane and the spatial
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The behavior and sensitivity of zb/zt as a function of the parameter 2T/z is

shown in Figure 4.

The special case of z=0 which corresponds to the usual piston problem

provides a useful baseline and is also readily addressed via the use of equations

(33) and (34). It is noted that the on-axis pressure for this case has been

previously addressed using an impulse response approach [14] and is simply

expressed as follows for all T:

ps�0, z, t� � w�tÿ z� ÿ w�tÿ
�������������
1� z2

p
�: �39�

The ®rst term in equation (39) corresponds to the ®eld generated by an in®nite

planar aperture with a uniform velocity w(t) and the latter term corresponds to

the edge wave. In contrast to the case of z 6� 0, the initial wave is not supersonic

in nature.

For the case of a weighting function with a short pulse duration 2T, it is

apparent that two separate pulses will be observed over the range where

Dt � ��������
1�z2
p ÿ z > 2T. The condition Dt � ���������

1�z2
b0

p ÿ zb0 � 2T de®nes a spatial

boundary zb0 for the uniform piston case which is readily expressed as

zb0 � 1ÿ �2T�2
2�2T� , z � 0: �40�

It is also noted that the transition distance zt is a maximum for this case, i.e.,

zt=1.
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If Dt< 2T it is apparent that the individual pulses overlap in time and
ps�0, z, t� versus t consists of three sections: an initial transient consisting of a
®nite section of w(tÿ z), the overlapping section and a ®nal transient consisting
of a ®nite section of w�tÿ �������������

1� z2
p �. Furthermore, if Dt� 2p=Ob � Tb it then

follows from equation (39) that ps�0, z, t� can be expressed as

ps�0, z, t�1w 0�tÿ z�
2z

, �41�

where w 0(t) denotes the time derivative of w(t). It is clear from the inverse range
dependence that the asymptotic expression in equation (41) is a far®eld result.
The minimum range of applicability in equation (41) is not unexpectedly

linked to frequency via the condition that the time duration of the impulse
response, i.e., the relative time delay between the pulses represented by the two
terms in equation (39), is small relative to a time scale of interest which is taken
here to be the period of the fundamental frequency Ob equation (20). For z� 1
it is noted that the relative time delay is then simply expressed as

Dt=Tb � 1=�2zTb�: �42�
If the following condition is used to de®ne the near/far®eld transition distance
zff :

Dt � Tb=4 � p=�2Ob�, �43�
then zff can be expressed as

zff � Ob=p, �44�
which is the usual Rayleigh distance for a piston source. Clearly, zff can be
expected to provide a reasonable estimate for the near- to far®eld transition for
pulsed ®elds associated with equation (20) for piston sources with large N. For
small N, a larger value may be more appropriate to account for the higher
frequencies in the spectrum, as noted in Figure 2.
Several measures may now be introduced in order to compare the

performance of an aperture used to generate an acoustic BB to its performance
with a uniform aperture distribution. An obvious measure is thus the normalized
spatial boundary ratio zb/zb0 which is readily expressed using equations (37) and
(40) as a function of 2T and z, i.e.,

zb=zb0 � 2�2T�
1ÿ �2T�2

cos z�sin z� 2T� ÿ
���������������������������������
�2T�2 � 2T sin z

q
sin2 z

�45�

for 2T< 1ÿ sin z. It is noted that the measure of performance is based solely on
the separation of the edge wave from the initial wave. The results in Figure 5
illustrate that: the ratio zb/zb0 E 1 for all T and z, the equality is satis®ed only at
z=0 for 2T< 1 and zb/zb0! 0 as T! 0 for all z 6� 0.
In order to discuss the near- to far®eld transition distance for an acoustic BB

with z 6� 0 the importance of the transition distance zt is ®rst noted. As
previously observed, zt is the on-axis distance at which the initial wave and edge
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wave intersect, i.e., Dt=0. In light of the piston case, the transition distance zt
can thus be interpreted as the near- to far®eld transition distance for acoustic

BBs as Ob!1. This interpretation is useful since it is consistent with the usual

de®nition of the Rayleigh distance for the piston case, i.e., it is apparent from

equation (44) that zff!1 as Ob!1 for which is the limiting result for zt . Since

the near- to far®eld transition distance for an acoustic bullet must be less than zt
for any ®nite Ob , it is then apparent that there must be a minimum frequency

above which the uniform aperture exhibits a larger near- to far®eld transition

distance than for an acoustic BB with z 6� 0.

It is now apparent that an alternative measure of performance for acoustic BB

®elds is the ratio of the near- to far®eld Rayleigh distance zff for a uniform

aperture to the transition distance zt which is independent of frequency, i.e.,

zff
zt
� Ob tan z

p
: �46�

It then follows that the near- to far®eld transition distance for a uniform

aperture will be greater than or equal to that of an acoustic BB for a non-zero z
providing

ObeOmin
b � p

tan z
: �47�

In retrospect, this result is not surprising since the Rayleigh distance for the

uniform aperture increases with Ob whereas the frequency dependent near- to

far®eld transition distance for an acoustic BB for a non-zero z is bounded from

above by a constant zt .
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A ®nal measure to compare the performance of an acoustic BB to the ®eld

from a uniform aperture distribution is to recall that the near/far ®eld transition

distance zff for the uniform aperture was based on the condition Dt=Tb/4 in

equation (43). If the same condition is now used for all z, it then follows that�������������
1� z2f

q
ÿ sin zÿ zf cos z � p=�2Ob�: �48�

For z=0 it is noted that

zf 0 � 1ÿ �p=�2Ob��2
p=�Ob� �49�

and zf! zff as p/(Ob)! 0. More generally, it is easily shown that

zf
zf 0
� p=Ob

1ÿ �p=�2Ob��2
a cos zÿ

��������������������������������������
a2 ÿ �1ÿ a2� sin2 z

q
sin2 z

, �50�

where a� [sin z+p/(2Ob)].

Numerical results for zf/zf 0 versus z are presented in Figure 6 for Ob=2mp
with m=1, 2, 3, 4 and 5. For a ®xed frequency Ob , the results show that zf/zf 0
is a monotonically decreasing function of z with a maximum at z=0.

The minimum value of zf/zf0=0 occurs when a � 1=
���
2
p

or when sin z �
1=

���
2
p ÿ p=�2Ob�. In light of the results it thus appears that the near- to

far®eld transition distance for an acoustic BB with z 6� 0 is less than the near-

to far®eld transition distance for the uniform aperture. Although the near- to

far®eld axial transition distance of the acoustic BB with z 6� 0 may be less than

the near-to far®eld transition distance for the piston case where z 6� 0, it is noted

that the lateral or radial extent of the acoustic BB may also be less than the

aperture size. The relative trade-off between axial range and lateral resolution is

presently being investigated and the results will be reported in a later paper.

Although the short pulse case where 2T� 1 is of primary interest here, it is

worthwhile to conclude this subsection by addressing the long pulse case where

2T� 1 and N� 1 for the ®nite planar aperture. After introducing the following

Fourier transform pairs

hs�r, z, t� , Hs�r, z, O�, ps�r, z, t� , Ps�r, z, O�, �51, 52�
it then follows from equations (7) and (8) that

Ps�r, z, O� � iOW�O�Hs�r, z, O�, �53�
where

Hs�r,z, O� � cos z
�s
0

rs drs

�2p
0

dfs

eÿiOR

2pR
J0�O sin zrs�: �54�

It is noted that equation (54) is equivalent to the usual Rayleigh surface integral

representation for a harmonic ®eld.
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Now for N� 1 it is then easily shown that the steady state component of the

pressure ®eld (neglecting the turn-on and turn-off transients) can be simply

expressed as

ps�r, z, t� � RefiObHs�r, z, Ob�eiObtg: �55�
For the on-axis case it is then apparent from equation (54) that

Hs�0, z, Ob� � cos z
�s
0

rs drs
eÿiOb

���������
z2�r2s
p���������������

z2 � r2s
p J0�Ob sin zrs�

� cos z eÿiObz

�a
0

J0�Ob sin z
������������������
y2 � 2zy

p
� eÿiOby dy, �56�

where a � �������������
z2 � 1
p ÿ z. The far®eld pressure may also be simply obtained and

can be expressed as

p f
s�R0, y, t� � RefiObH

f
s�R0, y, Ob� eiObtg, �57�

where

H f
s�R0, y, Ob� � eÿiObR0

2pR0
ps2 cos zGs�y, z, Ob� �58�
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and

Gs�y, z, Ob� � 1

�sin2 zÿ sin2 y� sin2 zJ0�Obs sin y� 2J1�Obs sin z�
Obs sin z

�
ÿ sin2 yJ0�Obs sin z� 2J1�Obs sin y�

Obs sin y

�
: �59�

For y=0 it is noted that

Gs�0, z, Ob� � 2J1�Obs sin z�
Obs sin z

: �60�

4. NUMERICAL RESULTS

In contrast to the preceding section, numerical results are now presented to
illustrate the characteristics of the acoustic BB ®elds for some speci®c cases of
interest. The results are presented ®rst for the case of an in®nite aperture and
then for the case of a ®nite aperture. Analogous numerical results for the
pressure time histories for a uniformly excited aperture are presented for the
®nite aperture in order to provide a baseline for comparison.
Consider ®rst the case of an in®nite aperture where Ob=20 and 2N=10. A

pressure map for p(r, 0, t) is shown in Figure 7 as a function of normalized time
t and normalized radial distance rr � r sin z for 0ErrE0�5. The results clearly
illustrate the expected space±time dependence of p(r, 0, t). Since T> rr= r sin z
over the indicated range of rr , the turn-on and turn-off transients are relatively
minor contributors to the overall time responses which are controlled by the
quasi steady state pressure contribution. It is noted that the quasi steady state
results are in agreement with the analytical result in equation (31) and the on-
axis pressure p(0, 0, t) corresponds to w(t). The lateral extent of the acoustic BB
is also noted to be in agreement with equation (32) and the on-axis axial extent
of the acoustic BB is determined by 2T.
In contrast to the preceding quasi-steady state example for the case of an

in®nite aperture, a pressure map for p(r, 0, t) where Ob=20 and 2N=2 is
shown in Figure 8 as a function of normalized time t and normalized radial
distance rr . A similar result is also shown in Figure 9 for the case of 2N=1, i.e.,
a single cycle of the excitation corresponding to w0=ÿ1 in equation (20). As a
result of the shorter pulse durations, the turn-on and turn-off transients are of
greater importance relative to the quasi steady state pressure contribution which
only exists in the region where 0ErrET. Equation (32) again provides a
reasonable estimate of the lateral extent of the acoustic BB and the axial extent
is again determined by the pulse duration 2T. The on-axis pressure p(0, 0, t)
again corresponds to w(t). In the region where rr>T, two distorted quasi-
sinusoidal signals are readily observed in the pressure time history at each point,
and in general the spectral content of the signals decreases as rr increases.



130 P. R. STEPANISHEN

Consider now the case of a ®nite aperture where s=1 and the gated
sinusoidal weighting function w(t) in equation (20) is again used as the excitation
where Ob=45, 2N=1 and w0=ÿ1 for the ®rst case of interest. On-axis
pressures p(0, z, t) are presented in Figure 10 as a function of a normalized time
(t ÿ z) for z/zt=0, 1/4, 1/2, 1, 2 and 4. Numerical results in each ®gure are
presented for two cases: z = p/6 and 0, i.e., the latter being the piston case. It is
noted that the transition distance is zt �

���
3
p

for the case of z = p/6 and the
Rayleigh distance is zff = 14�3 for the piston case.
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First, several observations of interest for the piston case are readily apparent
from the numerical results in Figure 10. The plane wave and edge components of
the pressure are clearly separated in time for the piston case when z/zt< 2. In the
region where 2< z/zt< 8 the plane and edge wave components are noted to
overlap, thus resulting in an interference pattern in time. The peak value of the
®eld for points in this axial region varies between 1 and 2 up to z/zt=8 which is
approximately the Rayleigh distance based on Ob .
Several important observations regarding the acoustic BB are also apparent

from Figure 10. As expected, the numerical result for the acoustic BB pressure at
z/zt=0 is noted to consist of two components: a direct wave component which
is identical to the plane wave result for the piston case and an edge wave
component which is signi®cantly reduced in amplitude with a longer time
duration than the piston case. The latter features are characteristic of the edge
wave for all axial distances. For z/zt=1/2 it is clearly noted that the initial
pressure for the acoustic BB ®eld arrives prior to the initial plane wave
contribution for the piston, i.e., the on-axis ®eld propagates at a supersonic
speed (l/cos z=2/

���
3
p

). The edge wave for this axial distance overlaps the initial
direct wave for the BB ®eld. However, the most remarkable feature of the
acoustic BB ®eld is the signi®cant reduction in the amplitude of the ®eld in the
region z/zt1 1. In this region the acoustic BB ®eld exhibits a more rapid decay
with distance than the ubiquitous inverse range law.
Consider again the case of a ®nite aperture where s=1 and the gated

sinusoidal weighting function w(t) with Ob=45, 2N=1 and w0=ÿ1; however,
the angle z is now reduced by a factor of 10, i.e., z=p/60. It is noted that the
transition distance is zt=19�08 for the case of z=p/60 and the Rayleigh
distance is unchanged, i.e., zff=14�3 for the piston case. On-axis pressures
p(0, z, t) are presented in Figure 11 as a function of a normalized time relative
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Fig. 10. (Caption on p. 134)
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Figure 10. Pressure versus normalized time for Ob=20 and 2N=1 for piston case (. . . . . .) and
acoustic bullet with z=30�: (a) z/zt=0; (b) z/zt=1/4; (c) z/zt=1/2; (d) z/zt=1; (e) z/zt=2; (f)
z/zt=4.
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Figure 11. Pressure versus normalized time for Ob=20 and 2N=1 for piston case (. . . . . .) and
acoustic bullet with z=3�: (a) z/zt=0; (b) z/zt=1/4; (c) z/zt=1/2; (d) z/zt=1; (e) z/zt=2; (f)
z/zt=4.
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to t= z for z/zt=0, 1/4, 1/2, 1, 2 and 4. A comparison of the acoustic BB
results in Figures 10 and 11 illustrates the relative importance of the edge waves
for z=p/6 and p/60. Clearly the edge waves are more comparable in amplitude
to those of the piston case as z! 0. This result is of course to be expected since
the piston case corresponds to z=0.
As a ®nal case of interest consider now a ®nite aperture and gated sinusoidal

excitation where s=1 and z=p/60 and 0. The frequency of excitation is now
selected to be Ob=73�18 which results in an on-axis far®eld null for the steady
state pressure as noted from equation (60), i.e., J1(Ob sin z)=0 for the z= p/60
case. On-axis pressures p(0, z, t) are presented in Figure 12 for 2N=4 as a
function of a normalized time relative to t= z for z/zt=1, 2, 4, 8 and 16. On-
axis normalized energy plots for the z=p/60 and piston cases are presented in
Figure 13 as a function of the normalized axial distance z/zt . The normalized
energy ratio at each point is de®ned to be the integral of the squared pressure
divided by the integral of the squared weighting function, i.e., T.
The results in Figure 12 clearly show a signi®cant change in the nature of the

on-axis pressure as z/zt increases. In particular, the importance of the edge
contributions of the edge wave increase as z/zt increases for the z=p/60 case.
For z=zt � 1 the edge contributions corresponding to the turn-on and turn-of
transients exhibit an inverse range dependence whereas the corresponding steady
state portion of each pressure must decay at a faster rate (recall
J1(Ob sin z)=0). A clearer picture of this spatial decay process is shown in
Figure 13 for the energy plot. In this ®gure the normalized energy for the z=p/
60 case is seen to exhibit a sharp dropoff from its near®eld level when z=zt11.
This near- to far®eld transition results in a rapid spatial rolloff of the energy
which is subsequently followed by the far®eld region where the energy decays
inversely with the square of the range.
A simple explanation for the general characteristics of the spatial decay of the

on-axis energy ®eld is readily obtained from the solution of the analogous
harmonic problem in which the pulse duration of interest is considered to be
long enough so that W(O) is spectrally pure. Numerical results for the
normalized intensity of the pressure as a function of z/zt are presented in Figure
14 for the preceding z=p/60 and piston cases for Ob=73�18. As expected the
intensity for the piston case exhibits an inverse square dependence on range
whereas the intensity for the z= p/60 case exhibits a much faster rolloff. An
additional result for the normalized intensity corresponding to the z=p/60 case
is also presented for Ob=103�6. This result shows that the ®eld for this
frequency clearly exhibits an inverse square dependence on range. It is thus
apparent that the inverse square dependence on range for the on-axis energy for
acoustic Bessel Bullets is associated with the spectral components of W(O) where
J1(Ob sin z) 6� 0.

5. SUMMARY AND CONCLUSIONS

Acoustic Bessel Bullets are de®ned to be a class of Transient Bessel Beam
(TBB) wave®elds. An acoustic Bessel Bullet (BB) with a smaller support region
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than a circular planar aperture can be launched from a ®nite aperture with a
speci®ed space±time normal acceleration distribution which is based on a pulsed
sinusoidal signal. In a limited near®eld space±time region the acoustic BB ®eld
generated by a ®nite aperture exhibits properties similar to those observed for
the in®nite aperture case, and in the far®eld region the ®eld exhibits an inverse
range dependence.
Analytical expressions for the on-axis and far®eld for acoustic Bessel Bullets

are developed for the in®nite and ®nite aperture cases using a previously
presented generalized impulse response approach. The expressions can be used to
investigate the limitations and the space±time properties of the BB ®elds as a
function of the center frequency and bandwidth or pulse length of the excitation.
In particular, the expressions provide important information on the spatial and
axial extent of acoustic Bessel Bullets. Expressions for the space±time ®eld for a
®nite aperture with a spatially uniform distribution which is a special case of an
acoustic bullet are also presented as a baseline for comparison.
Numerical results for the case of an in®nite aperture are ®rst presented to

provide a baseline and to illustrate the effects of carrier frequency and pulse
length on the axial and lateral extent and the general space±time properties of
the acoustic BB ®eld. The axial extent of the bullet is determined by the pulse
length of the excitation whereas the radial extent is determined by the excitation
frequency and the axicon angle z. Numerical results for the case of a ®nite
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tic bullets where Ob=73�18 and Ob=103�6 with z=3�.
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aperture are then presented to illustrate the general space±time properties of the
on-axis ®eld for acoustic BBs relative to the ®eld generated from the aperture
with a spatially uniform excitation. These results indicate that the largest near-
to far®eld transition distance occurs for the case of a uniform excitation. The
Rayleigh distance for this latter case appears to provide an upper limit for the
near ®eld for acoustic BB ®elds. Although acoustic BB ®elds from ®nite
apertures exhibit shorter transition distances relative to the uniform case, there is
also a concomitant reduced lateral extent of the ®eld which may be
advantageous in certain applications.

REFERENCES

1. J. N. BRITTINGHAM 1983 Journal of Applied Physics 54, 1179±1189. Focus wave
modes in homogeneous Maxwell's equations: transverse electric mode.

2. R. W. ZIOLKOWSKI 1985 Journal of Mathematical Physics 26, 861±863. Exact solu-
tions of the wave equation with complex source locations.

3. R. W. ZIOLKOWSKI, I. M. BESIERIS and A. M. SHAARAWI 1991 Proceedings of IEEE
79, 1371±1378. Localized wave representations of acoustic and electromagnetic
radiation.

4. I. M. BESIERIS, A. M. SHAARAWI and R. W. ZIOLKOWSKI 1989 Journal of
Mathematical Physics 30, 1254±1269. A bidirectional traveling plane wave represen-
tation of exact solutions of the scalar wave equation.

5. J. V. CANDY, R. W. ZIOLKOWSKI and D. K. LEWIS 1990 Journal of Acoustical
Society of America 88, 2235±2247. Transient waves estimation: a multichannel
deconvolution application.

6. J. V. CANDY, R. W. ZIOLKOWSKI and D. K. LEWIS 1990 Journal of Acoustical
Society of America 88, 2248±2258. Transient waves: reconstruction and processing.

7. J. E. HERNANDEZ, R. W. ZIOLKOWSKI and S. R. PARKER 1992 Journal of Acoustical
Society of America 92, 550±562. Synthesis of the driving functions of an array for
propagating localized wave energy.

8. T. T. WU 1985 Journal of Applied Physics 57, 2370±2373. Electromagnetic missiles.
9. T. T. WU, R. W. P. KING and H. M. SHEN 1987 Journal of Applied Physics 62,

4036±4040. Spherical lens as a launcher of electromagnetic missiles.
10. R. W. ZIOLKOWSKI and D. K. LEWIS 1990 Journal of Applied Physics 68, 6083±

6086. Veri®cation of the localized wave transmission e�ect.
11. R. W. ZIOLKOWSKI 1991 Physics Review A 44, 3960±3984. Localized wave physics

and engineering.
12. P. R. STEPANISHEN and J. SUN 1997 Journal of Acoustical Society of Amerca 102,

1955±1963. Acoustic bullets: transient bessel beams generated by planar apertures.
13. P. R. STEPANISHEN 1998 Journal of Acoustical Society of America 103, 1742±1751.

Acoustic bullets/transient bessel beams: near to far ®eld transition via an impulse
response approach.

14. P. R. STEPANISHEN 1971 Journal of Acoustical Society of America 49, 1629±1638.
Transient radiation from pistons in an in®nite planar ba�e.


	INTRODUCTION
	Figure 1

	GENERAL THEORY
	ACOUSTIC BESSEL BULLETS
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	NUMERICAL RESULTS
	Figure 7
	Figure 8
	Figure 9
	Figure 10(a), (b)
	Figure 10(c), (d)
	Figure 10(e), (f)
	Figure 11(a), (b)
	Figure 11(c), (d)
	Figure 11(e), (f)

	SUMMARY AND CONCLUSIONS
	Figure 12(a), (b)
	Figure 12(c), (d)
	Figure 12(e)
	Figure 13
	Figure 14

	REFERENCES

